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A new definition of counterpoise corrections (CP) to the components of AE 
evaluated with the Kitaura and Morokuma method is presented and tested 
on the (H20)2 and (NH3.HF) molecular systems with two different basis sets. 
The CP corrections are further decomposed into subsystems contributions, 
facilitating their interpretation and the elaboration of computationally sim- 
plified procedures. 
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1. Introduction 

The decomposition of the intermolecular interaction energy AE has been largely 
employed in the past years to classify molecular interactions into a few classes, 
to put in evidence the basic factors of the interaction act, to obtain some help 
in the elaboration of simplified methods to evaluate stabilization energies, to 
improve the performances of numerical fitting procedures to get analytical rep- 
resentations of the interaction energy hypersurface [1, 2]. 

The largest part of  this work has been done using AE values obtained with the 
SCF method, which is more practical than the perturbation theory t o g e t  AE 
values over a wide range of distances, especially for molecules of relatively large 
size. 

The same practical reasons have suggested the use, in the majority of cases, of 
basis sets very far from completeness, although AE values obtained with basis 
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sets of modest size are affected by a mathematical (unphysical) error, usually 
called basis set superposition error (BSSE). In fact AE is obtained as the difference 
of  the separately computed energies of the supersystem (say AB) and of the 
isolated subsystems (A and B): 

AE(RA~ ) = EAB(RAB ) -- (E~ E~ (1) 

EAB(RAB), however, is calculated with the union of the subsystems basis sets: 

x = XA| XB (2) 

and this fact introduces a relatively better description of AB with respect to the 
subsystems, with obvious consequences on the value of  d~E. 

The occurrence of  the BSSE error has long been recognized and it is universally 
accepted that the counterpoise method (CP) [3], or some variants, permits the 
correction of a substantial part of it. The CP corrections can be performed with 
ease, because they merely correspond to the introduction of a variable, RAB 
dependent, reference energy obtained by evaluating the subsystems energies at 
each RAB with the complete basis set (2): 

AE(RAB) = EA~(RAB)--(EA(RAB)' + E~(RA.) )  (3) 

with: 

E~(RAB) = E~ M =- A, B. (4) 

The calculation of E ~(RAB) values represents a modest increment of the computa- 
tional time necessary to get EAB(RAB). 

It has been also clearly demonstrated [4] that with appropriate care SCF minimal 
basis set calculations with CP corrections given interaction energies comparable 
with those obtained with more sophisticated methods. 

In spite of these well recognized facts, until recent times little attention has been 
paid to the correction of BSSE's in the SCF h E  decompositions. A definition of 
BSSE corrections to h E  components has been proposed by Sokalski et al. [5] 
in 1983 and applied in subsequent papers [6, 7]. To the best of our knowledge 
the other contributions to this subject are an unpublished study of Groen and 
van Duijneveldt [8], the formalism of which has been summarized in [4], a 
parenthetical remark of  Morokuma and Kitaura in a review on AE dcecomposi- 
tion [9], a partial decomposition adopted by Urban and Hobza [10], an oral 
communication of Claverie et al. to a recent Congress [11] and a proposal by 
Tolosa and Olivares [12] based on Morokuma's older version of the AE decompo- 

sition [13]. 

Since AE decompositions as well as BSSE corrections are arbitrary in some sense 
- they are in fact not related to basic theorems of quantum mechanics, but rather 
suggested and supported by intuitive considerations - it is worth exploring 
different combinations of AE decompositions and BSSE corrections to the AE 
components, in order to find a method which better combines practical execution 
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with the attainment of the goals for which AE decompositions are currently 
employed. 

In the present paper we present a computational scheme strictly based on the 
Kitaura and Morokuma (KM) decomposition scheme [14], this being the most 
largely employed decomposition method. However, the algorithm could be 
applied to other decomposition schemes (for example we mention the extension 
of the KM method given by Nagase et al. [15] and the polarized MO decomposi- 
tion [16]) and to BSSE corrections obtained as variant of the original CP method 
[17-21]. 

2. Method 

First of all we shall summarize the KM method. The interaction energy is 
partitioned in the following contributions: 

AE = Ees+ EpL + EEX + ECT + EMIX. (5) 

The first four contributions are calculated independently, the last one is obtained 
by difference. The contributions are evaluated with the usual HF SCF method 
employing a Fock matrix f written in terms of  the MO's of the subsystems, with 
a partition into blocks referring to occupied and vacant orbitals of the two 
subsystems (Ao, Av, Bo, By). For the reader's convenience we report here the 
block form and the names of the submatrices (to speak more properly, of the 
interaction matrix related to F, for details see source paper [14]). 

Ao 
Av 
Bo 
By 

Ao AB Bo By 

ESX PLX EX' CT 
ESX CT EX' 

ESX PLX 
ESX 

The components of hE  are obtained via E x values (upper index, x stands for 
the names of  the blocks) calculated by solving the HF equation with only a 
portion of  the blocks. The Ex values of Eq. (5) are obtained as a difference of 
E x values with respect to the appropriate reference energy. Further details may 
be found in the source paper [14] or in one of the numerous reviews (see e.g. 
[2] and [9]). What is important to remark here is that the BSSE connection may 
be introduced by modifying this reference energy. 

We shall now pass on to examine the single components paying attention to 
what type of orbital mixing is involved in each E x calculation. 

2.1. E~s 

The coulombic interaction between rigid charges is calculated with the aid of the 
energy obtained by using only diagonal blocks (ESX) with the further cancellation 
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of the subsystem exchange operator. There is no mixing of the MO's of the 
isolated subsystems, and accordingly we do not introduce CP corrections to this 
term. 

A different philosophy could however be adopted, and it will be discussed in the 
last section of the paper. 

2.2. EeL 

The electronic polarization energy is referred to the E x value obtained using 
ESX and PLX blocks, with the further cancellation of the contribution of 
subsystem exchange operators. There is now a mixing between occupied and 
vacant orbitals belonging to the same subset, but no mixing between MO's of 
different subsets. For this reason we shall not introduce CP corrections to this term. 

2.3. Eex 

The exchange terms, which introduces the correct antisymmetry properties in the 
supersystem wavefunction, is calculated in the KM method on the rigid orbitals 
of the subsystems. The considered blocks are ESX and EX'. This allows a mixing 
between occupied MO's of the subsystems: 

o c c  occ 

~o'~ = Y~ CMkr176 + Y, CM/P ~ (6) 
k j 

with M, N = A, B; k e M, j e N. The corresponding E x energy is obtained at the 
first cycle of the iterative procedure, corresponding to a symmetric orthogonaliz- 
ation process only. 

There is the need of a CP corrrection. This may be obtained by enlarging the 
basis set of M to the occupied MO's of N: 

x~x o o =q~M@~N. (7) 

The general computational scheme of KM may be retained. A further calculation 
on the above mentioned blocks with the Hamiltonian reduced to HM gives a CP 
corrected subsystem energy: 

E~(  RAB) = E~ - A ~ x. (8) 

Introducing these energies in the KM definition of reference energy for E~x one 
obtains: 

C P  EEX EEx+(AEX+AEX). (9) 

Another correction related to the mixing of A and B occupied MO's could be 
defined in terms of EM values calculated with Schmidt or L6wdin orthogonalized 
subsystem wavefunctions. This correction has been applied in [10] to the sum 
EEL + EEx, with Schmidt orthogonalization. The symmetric orthogonalization 
performed in the KM scheme leads to relatively large changes, generally going 
in the wrong direction (the corrected contribution is more stabilizing than the 
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uncorrected one). This is easily understandable because orthogonalization of the 
wavefunction to a functional space not considered in the HF process does not 
insure, per se, an improvement of the energy. We have enclosed in the program 
as optional the calculation of sub-system energies with orthogonalized MO's. 

2.4. ECT 

The change transfer contribution is obtained in the KM scheme via the energy 
obtained with retention of ESX and CT blocks. This allows a mixing of occupied 
MO's of M with vacant MO's of N. 

The corresponding CP correction is obtained, in analogy with the preceding case, 
by using the same route to compute subsystem energies on the space: 

CT 0 V 
XM =~OM@~N" (10) 

From the energies: 

E cr= ,-,M--,.*Mr~~ ACT (11) 

one obtains: 

CP ECT = ECT + (ACT+ ACT). (12) 

2.5. EMIx 

The mixing term is a residuum, calculated as the difference 

EM,x = A E - ( E E L  + EpL + EEX + ECT) (13) 

We introduce a correction based on the difference between the partial CP 
corrections introduced above and the total CP correction computed for each 
subsystem on the whole functional space 

x~, = x~, e x N .  (14) 

The subsystem energies being: 

E ~ = E ~  (15) 

we shall have: 

CP A MIX E~Ix=EMIx  + = E M I x + ( A r - A E X - A C T ) .  (16) 

We remark that all the CP corrections A x and A~ are positive. The correction 
proposed in [12] considers A T only, which is assigned to the E~ix term (we 
recall that in the Morokuma's original decomposition [13] ECT and E~Ix terms 
were not separated). 

The Euxx term could be subjected to a further decomposition (Nagase et al. 
[15]). We have not yet introduced this additional feature in the CP corrected AE 
decomposition, and this extension, which should be of interest for special classes 
of strong interactions, will be the subject of a future investigation. 
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The program has been coded for a GOULD sel minicomputer, as modification 
of the already existing KM program in Pisa, and appended to a modified version 
of the GAUSSIAN 70 package. 

3. Numerical results 

We report some results for two sets of intermolecular distances for the H20 
dimer, the first leading to the more favorable geometry of the complex, the second 
one repulsive on the whole distance range, and for a set of geometries of the 
H3N.HF supersystem. The internal geometry of the monomers are taken from 
literature (H20: ROH ~ 0 .956/k , /_HOH = 105.2~ NH3: RNH = 1.002 ~ , / _ H N H  = 
107.6~ HF: RHF----0.930 A) and kept fixed. The reciprocal orientation of the 
monomers in the linear H20.HOH dimer is that found experimentally (0 =60 ~ 
[22]); the dimers H20.OH2 and HaN.HF have respectively D2h and C3o symmetry. 
The calculations have been performed with standard STO-3G and 4-31G basis sets. 

The main body of results is collected in Tables 1, 2 and 3. The present method 
making it possible to decompose each CP correction into subsystem's contribu- 
tions, this additional information is reported in Tables 4, 5 and 6. 

3.1. CP corrections to Eex 

The values of Aex regularly decrease when RAB increases. Corrections are larger 
for the minimal basis, and, in general, larger for the electron donor subunit (note, 
however, the 4-31G values for HaN.HF). 

A Ex should not be confused with the BSSE (1) correction of Sokalski et al. [5] to 
the Eex contribution, because the two corrections refer to a different philosophy. 
BSSE (~) is in fact a correction obtained on the complete basis set, XA•XB, and 
refers to the energy of a fully antisymmetrized wavefunction of the supersystem 
with MO's of  the subsystems subjected only to symmetrical orthonormalization. 
This procedure does not present the inconveniencies remarked in Sect. 2 when 
the energies of  the subsystems obtained with mutually orthogonalized MO's are 
employed, but the definition of BSSE (1) does not ensure that it is always positive. 
The result for the H20.HOH system, obtained with the same basis set (4-31G) 
and the same geometries as those adopted here make the point evident (see Table 
7). 

3.2. CP correction to ECT 

In general, the minimal basis sets give an overestimation of charge transfer 
corrections. This artifact is partly corrected by A cr. Moreover there is a clear 
indication that with the STO-3G basis the electron donor (ED) contribution to 
h c r  is decidedly larger than the electron acceptor (EA) contribution, and the 
latter could be neglected without substantial changes. 

The corrected cP E CT values obtained with the STO-3G basis are presumably still 
E c r  values obtained with the M I N I  too large. It would be interesting to examine ce 
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Table 4. CP Corrections to AE components: total (TOT) electron acceptor (EA) and electron donor 
( E D )  contributions. Comparison of STO-3G and 4-31G results for the linear H20.HOH complex 

Basis set STO-3G 4-31G 

RAB(,~)  2.38 2.68 2.98 3.28 3.58 2.38 2.68 2.98 3.28 3.58 

T O T  A ~x  4.30 1.98 0.77 0.27 0.08 0.47 0.33 0.21 0.11 0.05 
A cT 2.33 1.81 1.01 0.44 0.16 0.88 0.47 0.40 0.51 0.58 
A Mm 5.65 3.47 1.64 0.63 0.21 1.36 1.08 0.84 0.56 0.32 
A T 12.28 7.26 3.42 1.34 0.45 2.71 1.88 1.45 1.17 0.95 

E A  A z x  0.36 0.16 0.06 0.02 0.01 0.20 0.13 0.07 0.03 0.01 
Acr  0.01 0.01 0.01 0.00 0.00 0,20 0.10 0.09 0.07 0.03 
A Mtx 0.05 0.02 0.01 0.01 0,00 0.51 0,36 0.23 0.10 0.03 
A T 0.42 0,19 0,08 0.03 0.01 0.91 0.59 0.38 0,20 0.08 

E D  A Ex 3.94 1.82 0.71 0.24 0.07 0.26 0.20 0.15 0.08 0.03 
Acr  2.32 1.80 1.01 0.44 0.16 0.68 0.37 0.31 0.44 0.55 
A Mix 5.60 3.45 1.63 0.63 0.21 0.85 0,72 0.61 0.46 0,28 
A r 11.86 7.07 3.34 1.31 0.44 1.79 1.29 1.07 0.98 0.86 

Table 5. CP Corrections to AE components: total (TOT) contributions a. Comparison of STO-3G 

and 4-31G results for the linear H20.OH2 complex 

Basis set STO-3G 4-31G 

RAB(~k) 2.38 2.68 2.98 3.28 3.58 2.38 2.68 2.98 3.28 3.58 

T O T  A Ex 1.31 0.30 0.05 0.01 0.00 0.41 0.28 0.14 0.05 0.01 
A cT  0.12 0.05 0.01 0.00 0.00 0.11 0.13 0.17 0.12 0.06 
A Mzx 0.04 0.01 0,00 0.00 0.00 0.37 0.49 0.4l 0,21 0.07 
A r 1.47 0,36 0.07 0.01 0.00 0.89 0.90 0.71 0.38 0.14 

Because of symmetry only TOT contributions are displayed 

basis set introduced by Tatewaki and Huzinaga [23] and successfully tested in 
CP-corrected calculations of AE by Hobza and Sauer [24]. The A cr results 
obtained with the 4-31G basis set indicate that there is not a monotonic decreasing 
of  the correction when RAB increases. A simple explanation of  this fact can be 
done in terms of changes, with RAB, of the capability of mixing of occupied 
orbitals of  M with virtual orbitals of N, a capability which can be numerically 
appreciated in terms of second order perturbation theory. Intuitively the vacant 
MO's are more spread out than the occupied ones, and when RAn increases, the 
overlap and the interaction matrix elements may reach a maximum. According 
to intuition this effect is more evident in the A cT correction to the electron donor 
subsystem. A similar explanation has been put forward by Wells and Wilson 
[25] for the total CP correction in the case of two subsystems held at a fixed 
geometry while the basis set increases. Our dissection of A r into separate com- 
ponents allows a more precise identification of  specific basis set superposition 
error. 
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Table 6. CP Corrections to AE components: total (TOT), electron acceptor (EA) and electron donor 
(ED) contributions. Comparison of STO-3G and 4-31G results for the linear H3N.HF complex 

Basis set STO-3G 4-31G 

RAB(]k) 2.16 2.46 2.76 3 .06  3.36 3.66 2.16 2.46 2.76 3 .06  3.36 3.66 

TOT A Ex 3.79 2 .38  1 .23  0 .55  0.22 0.08 0.71 0.46 0 .31 0 .19  0.10 0.04 
A cT 0.94 1.21 0.99 0 .61  0 .31  0.13 1.55 0 .83  0 .37  0 .19  0 .27  0.39 
A MIx 4.41 4.04 2 .75  1 .49  0 .67  0.25 1.63 1 .02  0.74 0 .62  0 .48  0.33 
A T 9.13 7.64 4.96 2 .65  1 .19  0.46 3.89 2 .31  1 .43  1 .00  0 .85  0.76 

EA A ex 0.84 0 .45  0 .21  0 .09  0.04 0.01 0.44 0 .31  0 .19  0.10 0.04 0.02 
A cr  0.03 0 .01  0 .01  0.00 0.00 0.00 0.65 0.32 0 .16  0 .11 0.07 0.04 
A Mxx 0.13 0 .02  0 .01  0.00 0.00 0.00 1.29 0 .76  0 .47  0 .24  0.09 0.03 
A r 1.00 0 .49  0 .23  0.10 0.04 0.0l 2.37 1 .40  0 .82  0 .45  0 .21  0.08 

ED A ex 2.94 1 .93 1 .01 0 .45  0 .18  0.06 0.27 0 .15  0.12 0 .09  0 .06  0.03 
Acr 0.91 1 .21 0.98 0 .61  0 .31  0.13 0.90 0 .51  0 .21  0 .08  0.20 0.36 
h, M~x 4.28 4 .02  2.74 1 .48 0 .67  0.25 0.35 0 .25  0 .29  0.39 0.39 0.30 
A T 8.13 7 .15  4.74 2 .55  1 .15 0.45 1.51 0 .91  0 .62  0 .56  0.64 0.68 

Table 7. BSSE and BSSE (x) components data, for the 
linear complex H20.HOH and 4-31G basis set, from [7] 

RAB(I~k) 2.68 2.98 3.28 

BSSE ~ 1.277 0.197 -0.105 
BSSE ~2~ 0.602 1.244 1.275 
BSSE 1.875 1.442 1.170 

In  spi te  o f  this  n o n  m o n o t o n i c  b e h a v i o u r ,  a lso  wi th  t he  4 -31G basis  t he  ED 
c o n t r i b u t i o n s  to A c r  a re  l a rge r  t h a n  the  EA c o n t r i b u t i o n s  ( the  e x c e p t i o n  is 

H 3 N . H F  at  R = 3 .06 /~) .  

T h e  c o r r e c t i o n  fo r  EcT p r o p o s e d  by  Soka l sk i  et al. [5] ac tua l ly  app l i e s  to  the  

s u m  EcT + E~ix. It  is o b t a i n e d  as the  d i f f e rence  b e t w e e n  the  to ta l  C P  c o r r e c t i o n  

( B S S E  = A r )  a n d  B S S E  ~1~. T h e  va lues  fo r  H 2 0 . H O H  r e p o r t e d  in T a b l e  7 s h o w  

tha t  the  c o r r e c t i o n  inc reases  w h e n  RA~ inc reases .  This  t r e n d  is d u e  in pa r t  to the  

d i f fe ren t ia l  m i x i n g  ab i l i ty  o f  o c c u p i e d  a n d  v i r tua l  o rb i t a l s  d i s c u s s e d  a b o v e  a n d  

in pa r t  to t he  de f i n i t i on  o f  B S S E  (1). 

3.3. CP correction to EMtx 

T h e  EMIx t e r m  is o b t a i n e d  in t he  K M  s c h e m e  as a d i f f e rence  a n d  c o n t a i n s  t e rms  

o f  d i f fe ren t  o r ig in  [9]. Its b e h a v i o r  w i th  r e spec t  to RAB in d i f fe ren t  c o m p o u n d s  

a n d  wi th  d i f fe ren t  bas is  sets is n o t  eas i ly  a m e n a b l e  to  s i m p l e  rules .  As  a ve ry  

r o u g h  ru le  it  m a y  be  sa id  tha t  it is la rger ,  in a b s o l u t e  va lue ,  fo r  s t r o n g e r  in te rac -  

t ions ,  b u t  o f t e n  it  ha s  a d i f fe ren t  s ign ( c o m p a r e ,  fo r  e x a m p l e ,  a m o n g  t h e  cases  

c o n s i d e r e d  he re ,  t he  v a l u e s  at  sma l l  R fo r  H 3 N . H F  in the  t w o  bas is  sets,  T a b l e  

3). A M~x, a l w a y s  pos i t i ve  by  def in i t ion ,  b r ings  a c o r r e c t i o n  w h i c h  in s o m e  cases  

r e d u c e s ,  a n d  in  o t h e r  cases  inc reases  [E~1x]. 
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4. Conclusions 

We would like to stress that the main motivation for introducing CP corrections 
to the BSSE error in AE calculations and in the decomposition of AE is of 
practical origin. In particular CP corrections to the interaction energy components 
should preserve the direct intuitive meaning of the original definitions and the 
possibility of practical applications mentioned in the introduction. 

The present method leaves the classical components of AE unaltered, namely 
EEs and EpL which have been systematically employed in our elaboration of 
semiclassical models for chemical interactions [26]. We have selected the present 
version for this very reason, being aware, however, that other researchers, 
prompted by the same basic motivation, should prefer CP corrections to AE 
components which change the subsystems charge distributions and polarizabilities 
(see, e.g. [27-29]). It may be remarked that in the first use of a CP correction 
(prior to Ref. [3]) made by Jansen and Ros [30] this idea has been tacitly assumed. 
We shall examine other methods in the prosecution of the present study, but it 
is clear that a statement on the merits of a method for BSSE corrections to AE 
components must be based on empirical evidence, i.e. on the results it gives for 
an adequately large number of cases. In spite of the large number of CP corrections 
available in the literature, a systematic study of AT(RAB) (not to speak of its 
components) in function of the chemical nature of the system and of the basis 
set has never been performed. The numerical data given in the present paper are 
not sufficient for this study, nor are those provided by Sokalski et al. [5, 6]. For 
the moment the question remains unanswered, and according to the pragmatic 
point of view considered here, both available methods show a potential validity. 

It is worth remarking that the present method gives a detailed decomposition of 
A T, facilitating its analysis and the selection of simplified procedures. We have 
already remarked that with minimal basis sets the A cT corrections could be 
limited to the electron donor subsystem, and probably for specific but wide classes 
of molecular interactions the whole CP correction could be limited to the ED 
component alone (see, e.g. [29, 31]). An analysis of the A T components could 
represent the empirical basis to support other versions of the BSSE correction, 
like that of limiting the CP calculations to the vacant space only [9, 18], or that 
of introducing a penalty function k <  1 to A r [17, 19, 20, 21] or to some com- 
ponents of it. 

Several among these alternative versions lead to a reduction of the computational 
time. The computational time of the present version, which gives a detailed 
description perhaps unnecessary in routine applications, can be appreciated in 
the following way. A standard CP correction to AE requires the introduction of 
two additional SCF processes; the AE decomposition (without CP correction) 
requires the introduction of two new but different SCF processes; the CP correc- 
tion to the AE components, in the present version, requires the combination of 
the already mentioned processes with two new SCF calculations. All the additional 
processes involve the knowledge of one- and two-electron integrals computed 
for the original supersystem calculation only. The increases of computational 
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t i m e  wil l  d e p e n d  on  the  d i m e n s i o n  o f  o c c u p i e d  a n d  v a c a n t  s p a c e s ;  fo r  the  cases  

e x a m i n e d  h e r e  t he r e  is an  i n c r e m e n t  o f  the  o r d e r  o f  6 5 - 8 0 %  wi th  r e spec t  to the  

o r ig ina l  c a l c u l a t i o n s .  
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