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A new definition of counterpoise corrections (CP) to the components of AE
evaluated with the Kitaura and Morokuma method is presented and tested
on the (H,0), and (NH;-HF) molecular systems with two different basis sets.
The CP corrections are further decomposed into subsystems contributions,
facilitating their interpretation and the elaboration of computationally sim-
plified procedures.
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1. Irtroduction

The decomposition of the intermolecular interaction energy AE has been largely
employed in the past years to classify molecular interactions into a few classes,
to put in evidence the basic factors of the interaction act, to obtain some help
in the elaboration of simplified methods to evaluate stabilization energies, to
improve the performances of numerical fitting procedures to get analytical rep-
resentations of the interaction energy hypersurface [1, 2].

The largest part of this work has been done using AE values obtained with the
SCF method, which is more practical than the perturbation theory to get AE
values over a wide range of distances, especially for molecules of relatively large
size.

The same practical reasons have suggested the use, in the majority of cases, of
basis sets very far from completeness, although AE values obtained with basis
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sets of modest size are affected by a mathematical (unphysical) error, usually
called basis set superposition error (BSSE). In fact AE is obtained as the difference
of the separately computed energies of the supersystem (say AB) and of the
isolated subsystems (A and B):

AE(RAB)=EAB(RAB)_(E';\+E;3)- (1)
E.z(R4p), however, is calculated with the union of the subsystems basis sets:

X=XA®xs (2)

and this fact introduces a relatively better description of AB with respect to the
subsystems, with obvious consequences on the value of AE.

The occurrence of the BSSE error has long been recognized and it is universally
accepted that the counterpoise method (CP) [3], or some variants, permits the
correction of a substantial part of it. The CP corrections can be performed with
ease, because they merely correspond to the introduction of a variable, R
dependent, reference energy obtained by evaluating the subsystems energies at
each R,p with the complete basis set (2):

AE(RAB) :EAB(RAB)_(EfA(RAB)+Ei?(RAB)) (3)
with:
E;vl(RAB) = ?w"‘AI-{/I(RAB) M=A,B. (4)

The calculation of E 4,( R4p) values represents a modest increment of the computa-
tional time necessary to get E p(Rup).

It has been also clearly demonstrated [4] that with appropriate care SCF minimal
basis set calculations with CP corrections given interaction energies comparable
with those obtained with more sophisticated methods.

In spite of these well recognized facts, until recent times little attention has been
paid to the correction of BSSE’s in the SCF AE decompositions. A definition of
BSSE corrections to AE components has been proposed by Sokalski et al. [5]
in 1983 and applied in subsequent papers [6,7]. To the best of our knowledge
the other contributions to this subject are an unpublished study of Groen and
van Duijneveldt [8], the formalism of which has been summarized in [4], a
parenthetical remark of Morokuma and Kitaura in a review on AE dcecomposi-
tion [9], a partial decomposition adopted by Urban and Hobza [10], an oral
communication of Claverie et al. to a recent Congress [11] and a proposal by
Tolosa and Olivares [ 12] based on Morokuma’s older version of the AE decompo-
sition [13].

Since AE decompositions as well as BSSE corrections are arbitrary in some sense
- they are in fact not related to basic theorems of quantum mechanics, but rather
suggested and supported by intuitive considerations - it is worth exploring
different combinations of AE decompositions and BSSE corrections to the AE
components, in order to find a method which better combines practical execution
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with the attainment of the goals for which AE decompositions are currently
employed.

In the present paper we present a computational scheme strictly based on the
Kitaura and Morokuma (KM) decomposition scheme [14], this being the most
largely employed decomposition method. However, the algorithm could be
applied to other decomposition schemes (for example we mention the extension
of the KM method given by Nagase et al. [15] and the polarized MO decomposi-
tion [16]) and to BSSE corrections obtained as variant of the original CP method
[17-21].

2. Method

First of all we shall summarize the KM method. The interaction energy is
partitioned in the following contributions:

AE =EE5+EPL+EEX+ECT+EMIX- (5)

The first four contributions are calculated independently, the last one is obtained
by difference. The contributions are evaluated with the usual HF SCF method
employing a Fock matrix F written in terms of the MO’s of the subsystems, with
a partition into blocks referring to occupied and vacant orbitals of the two
subsystems (Ao, Ay, B,, By). For the reader’s convenience we report here the
block form and the names of the submatrices (to speak more properly, of the
interaction matrix related to F, for details see source paper [14]).

A, [ESX PLX EX' cr

Ay ESX CT EX’
B, ESX PLX
By ESX

The components of AE are obtained via E* values (upper index, x stands for
the names of the blocks) calculated by solving the HF equation with only a
portion of the blocks. The E, values of Eq. (5) are obtained as a difference of
E” values with respect to the appropriate reference energy. Further details may
be found in the source paper [14] or in one of the numerous reviews (see e.g.
[2] and [9]). What is important to remark here is that the BSSE connection may
be introduced by modifying this reference energy.

We shall now pass on to examine the single components paying attention to
what type of orbital mixing is involved in each E* calculation.

201. EES

The coulombic interaction between rigid charges is calculated with the aid of the
energy obtained by using only diagonal blocks (ESX) with the further cancellation
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of the subsystem exchange operator. There is no mixing of the MQ’s of the
isolated subsystems, and accordingly we do not introduce CP corrections to this
term.

A different philosophy could however be adopted, and it will be discussed in the
last section of the paper.

22 Ep

The electronic polarization energy is referred to the E™ value obtained using
ESX and PLX blocks, with the further cancellation of the contribution of
subsystem exchange operators. There is now a mixing between occupied and
vacant orbitals belonging to the same subset, but no mixing between MO’s of
different subsets. For this reason we shall not introduce CP corrections to this term.

2.3. Epx

The exchange terms, which introduces the correct antisymmetry properties in the
supersystem wavefunction, is calculated in the KM method on the rigid orbitals
of the subsystems. The considered blocks are ESX and EX'. This allows a mixing
between occupied MO’s of the subsystems:

occ oce

M= % CMkGD?c"' Z CMjGD?, (6)
J

with M, N=A, B; ke M, je N. The corresponding E* energy is obtained at the
first cycle of the iterative procedure, corresponding to a symmetric orthogonaliz-
ation process only.

There is the need of a CP corrrection. This may be obtained by enlarging the
basis set of M to the occupied MO’s of N:

X =em@eR. (7)

The general computational scheme of KM may be retained. A further calculation
on the above mentioned blocks with the Hamiltonian reduced to H), gives a CP
corrected subsystem energy:

ﬁ(RAB)=E(I)\4_Af/IX- (8)

Introducing these energies in the KM definition of reference energy for Exx one
obtains:

Eg§= EEX+(A£X+AEX)- (9)

Another correction related to the mixing of A and B occupied MO’s could be
defined in terms of E,, values calculated with Schmidt or Lowdin orthogonalized
subsystem wavefunctions. This correction has been applied in [10] to the sum
Ey; + Erx, with Schmidt orthogonalization. The symmetric orthogonalization
performed in the KM scheme leads to relatively large changes, generally going
in the wrong direction (the corrected contribution is more stabilizing than the
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uncorrected one). This is easily understandable because orthogonalization of the
wavefunction to a functional space not considered in the HF process does not
insure, per se, an improvement of the energy. We have enclosed in the program
as optional the calculation of sub-system energies with orthogonalized MO’s.
2.4. Ecr

The change transfer contribution is obtained in the KM scheme via the energy
obtained with retention of ESX and CT blocks. This allows a mixing of occupied
MO’s of M with vacant MO’s of N.

The corresponding CP correction is obtained, in analogy with the preceding case,
by using the same route to compute subsystem energies on the space:

X = ¢S @k a0
From the energies:

Eff =E% -0 } (11)
one obtains:

E(C:‘I7"=ECT+(A§T+AJC3IT)- (12)

2.5. Exix
The mixing term is a residuum, calculated as the difference
Emix =AE —(EgL+ Ep .+ Epx + Ecr) (13)

We introduce a correction based on the difference between the partial CP
corrections introduced above and the total CP correction computed for each
subsystem on the whole functional space

Xm = Xnm DX (14)
The subsystem energies being:

EvM=E°-A} (15)
we shall have:

ESix = Epux + 8™ = Epgye + (AT = AFX — A7), (16)

We remark that all the CP corrections A* and A}, are positive. The correction
proposed in [12] considers AT only, which is assigned to the Ej;x term (we
recall that in the Morokuma’s original decomposition [13] Ecr and Epgy terms
were not separated).

The Ep;ux term could be subjected to a further decomposition (Nagase et al.
[15]). We have not yet introduced this additional feature in the CP corrected AE
decomposition, and this extension, which should be of interest for special classes
of strong interactions, will be the subject of a future investigation.
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The program has been coded for a GOULD sel minicomputer, as modification
of the already existing KM program in Pisa, and appended to a modified version
of the GAUSSIAN 70 package.

3. Numerical results

We report some results for two sets of intermolecular distances for the H,O
dimer, the first leading to the more favorable geometry of the complex, the second
one repulsive on the whole distance range, and for a set of geometries of the
H;N.HF supersystem. The internal geometry of the monomers are taken from
literature (H,0: Roy=0.956 A, £HOH =105.2°; NH,: Ryu=1.002 A, ZHNH =
107.6°; HF: Ryr=0.930 A) and kept fixed. The reciprocal orientation of the
monomers in the linear H,O.HOH dimer is that found experimentally (8 = 60°
[22]); the dimers H,O.OH, and H;N.HF have respectively D,, and C;, symmetry.
The calculations have been performed with standard STO-3G and 4-31G basis sets.

The main body of results is collected in Tables 1, 2 and 3. The present method
making it possible to decompose each CP correction into subsystem’s contribu-
tions, this additional information is reported in Tables 4, 5 and 6.

3.1. CP corrections to Egx

The values of Agx regularly decrease when R,p increases. Corrections are larger
for the minimal basis, and, in general, larger for the electron donor subunit (note,
however, the 4-31G values for H;N.HF).

A®X should not be confused with the BSSE'” correction of Sokalski et al. [5] to
the Exx contribution, because the two corrections refer to a different philosophy.
BSSE® is in fact a correction obtained on the complete basis set, x 4@ x5, and
refers to the energy of a fully antisymmetrized wavefunction of the supersystem
with MO’s of the subsystems subjected only to symmetrical orthonormalization.
This procedure does not present the inconveniencies remarked in Sect. 2 when
the energies of the subsystems obtained with mutually orthogonalized MO’s are
employed, but the definition of BSSE" does not ensure that it is always positive.
The result for the H,0.HOH system, obtained with the same basis set (4-31G)
and the same geometries as those adopted here make the point evident (see Table
7).

3.2. CP correction to Ecr

In general, the minimal basis sets give an overestimation of charge transfer
corrections. This artifact is partly corrected by A°”. Moreover there is a clear
indication that with the STO-3G basis the electron donor ( ED) contribution to
AT is decidedly larger than the electron acceptor (EA) contribution, and the
latter could be neglected without substantial changes.

The corrected E S5 values obtained with the STO-3G basis are presumably still
too large. It would be interesting to examine E €P values obtained with the MINT
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Table 4. CP Corrections to AE components: total (TOT) electron acceptor (EA) and electron donor
(ED) contributions. Comparison of STO-3G and 4-31G results for the linear H,O.HOH complex

Basis set STO-3G 4-31G
R.p(A) 238 268 298 328 358 238 268 298 328  3.58

TOT AfX 430 198 077 027 0.08 047 033 021 011 0.05
AT 233 181 101 044 0.16 088 047 040 051 058
AMIX 565 347 164 063 021 136 108 084 056 032
AT 1228 726 342 134 045 271 188 145 117 095

EA A®X 036 016 006 0.02 001 020 0.13 007 0.03 0.01
AT 001 001 001 000 0.00 020 010 0.09 007 003
AMIX 0.05 002 001 001 000 051 036 023 010 0.03
AT 042 019 008 003 001 091 059 038 020 008

ED AF¥ 394 182 071 024 007 026 020 015 008 0.3
AT 232 180 101 044 0.16 068 037 031 044 0.55
AMIX 560 345 163 063 021 085 072 061 046 028
AT 11.86 7.07 334 131 044 .79 129 107 098 086

Table 5. CP Corrections to AE components: total (TOT) contributions®. Comparison of STO-3G
and 4-31G results for the linear H,0.0H, complex

Basis set STO-3G 4-31G
R,z(A) 238 268 298 328 3.58 238 268 298 328 3.58

TOT A% 131 030 0.05 0.01 0.0 041 028 014 005 0.01
ACT 0.12 005 001 000 0.00 011 013 017 012 006
AMIX 004 001 000 000 0.00 037 049 041 02t 0.07
AT 147 036 007 001 0.00 089 090 071 038 0.14

% Because of symmetry only TOT contributions are displayed

basis set introduced by Tatewaki and Huzinaga [23] and successfully tested in
CP-corrected calculations of AE by Hobza and Sauer [24]. The AT results
obtained with the 4-31G basis set indicate that there is not a monotonic decreasing
of the correction when R,p increases. A simple explanation of this fact can be
done in terms of changes, with R,p, of the capability of mixing of occupied
orbitals of M with virtual orbitals of N, a capability which can be numerically
appreciated in terms of second order perturbation theory. Intuitively the vacant
MO’s are more spread out than the occupied ones, and when R,p increases, the
overlap and the interaction matrix elements may reach a maximum. According
to intuition this effect is more evident in the AT correction to the electron donor
subsystem. A similar explanation has been put forward by Wells and Wilson
[25] for the total CP correction in the case of two subsystems held at a fixed
geometry while the basis set increases. Our dissection of AT into separate com-
ponents allows a more precise identification of specific basis set superposition
error.
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Table 6. CP Corrections to AE components: total { TOT), electron acceptor { EA) and electron donor
( ED) contributions. Comparison of STO-3G and 4-31G results for the linear H;N.HF complex

Basis set STO-3G 4-31G
R.p(A) 216 246 276 3.06 336 3.66 2,16 246 276 3.06 336 3.66

TOT ABX 379 238 123 055 022 008 071 046 031 019 0.10 0.04
ACT 094 121 099 061 031 013 155 083 037 019 027 039
AMIX 441 404 275 149 067 025 1.63 1.02 074 062 048 033
AT 9.13 7.64 496 265 1.19 046 389 231 143 100 085 076

EA AFX 0.84 045 021 009 004 001 044 031 019 010 0.04 0.02
AT 0.03 001 001 000 000 000 065 032 016 011 007 0.04
AMIX 0.13 0.02 001 000 000 000 129 076 047 024 009 0.03
AT 1.00 049 023 0.10 004 001 237 1.40 082 045 021 0.08

ED A% 294 193 101 045 0.18 006 027 015 012 009 0.06 0.03
AT 091 121 098 061 031 013 090 051 021 008 020 036
AMIX 428 402 274 148 067 025 035 025 029 039 039 030
AT 813 7.15 474 255 115 045 1.51 091 062 056 064 0.68

Table 7. BSSE and BSSE™ components data, for the
linear complex H,0.HOH and 4-31G basis set, from [7]

Rup(A) 2.68 2.98 3.28

BSSE 1.277 0.197 —0.105
BSSE® 0.602 1.244 1.275
BSSE 1.875 1.442 1.170

In spite of this non monotonic behaviour, also with the 4-31G basis the ED
contributions to A" are larger than the EA contributions (the exception is
H,N.HF at R=3.06 A).

The correction for E-y proposed by Sokalski et al. [S] actually applies to the
sum Eqr+ Ep;x. It is obtained as the difference between the total CP correction
(BSSE=A") and BSSE". The values for H,O0.HOH reported in Table 7 show
that the correction increases when R,p increases. This trend is due in part to the
differential mixing ability of occupied and virtual orbitals discussed above and
in part to the definition of BSSE".

3.3. CP correction to E,x

The E,;x term is obtained in the KM scheme as a difference and contains terms
of different origin [9]. Its behavior with respect to R,p in different compounds
and with different basis sets is not easily amenable to simple rules. As a very
rough rule it may be said that it is larger, in absolute value, for stronger interac-
tions, but often it has a different sign (compare, for example, among the cases
considered here, the values at small R for H;N.HF in the two basis sets, Table
3). AM™X always positive by definition, brings a correction which in some cases
reduces, and in other cases increases IEM,XI.
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4. Conclusions

We would like to stress that the main motivation for introducing CP corrections
to the BSSE error in AE calculations and in the decomposition of AE is of
practical origin. In particular CP corrections to the interaction energy components
should preserve the direct intuitive meaning of the original definitions and the
possibility of practical applications mentioned in the introduction.

The present method leaves the classical components of AE unaltered, namely
Ers and Ep; which have been systematically employed in our elaboration of
semiclassical models for chemical interactions [26]. We have selected the present
version for this very reason, being aware, however, that other researchers,
prompted by the same basic motivation, should prefer CP corrections to AE
components which change the subsystems charge distributions and polarizabilities
(see, e.g. [27-29]). It may be remarked that in the first use of a CP correction
(prior to Ref. [3]) made by Jansen and Ros [30] this idea has been tacitly assumed.
We shall examine other methods in the prosecution of the present study, but it
is clear that a statement on the merits of a method for BSSE corrections to AE
components must be based on empirical evidence, i.e. on the results it gives for
an adequately large number of cases. In spite of the large number of CP corrections
available in the literature, a systematic study of AT(R,z) (not to speak of its
components) in function of the chemical nature of the system and of the basis
set has never been performed. The numerical data given in the present paper are
not sufficient for this study, nor are those provided by Sokalski et al. [5, 6]. For
the moment the question remains unanswered, and according to the pragmatic
point of view considered here, both available methods show a potential validity.

It is worth remarking that the present method gives a detailed decomposition of
AT, facilitating its analysis and the selection of simplified procedures. We have
already remarked that with minimal basis sets the A" corrections could be
limited to the electron donor subsystem, and probably for specific but wide classes
of molecular interactions the whole CP correction could be limited to the ED
component alone (see, e.g. [29,31]). An analysis of the AT components could
represent the empirical basis to support other versions of the BSSE correction,
like that of limiting the CP calculations to the vacant space only [9, 18], or that
of introducing a penalty function k<1 to AT [17,19,20,21] or to some com-
ponents of it.

Several among these alternative versions lead to a reduction of the computational
time. The computational time of the present version, which gives a detailed
description perhaps unnecessary in routine applications, can be appreciated in
the following way. A standard CP correction to AE requires the introduction of
two additional SCF processes; the AE decomposition (without CP correction)
requires the introduction of two new but different SCF processes; the CP correc-
tion to the AE components, in the present version, requires the combination of
the already mentioned processes with two new SCF calculations. All the additional
processes involve the knowledge of one- and two-electron integrals computed
for the original supersystem calculation only. The increases of computational
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time will depend on the dimension of occupied and vacant spaces; for the cases
examined here there is an increment of the order of 65-80% with respect to the
original calculations.

Acknowledgments. A partial support of the Italian Ministry of Public Education (M.P.1.) ks acknowl-
edged. The Istituto di Chimica Quantistica ed Energetica Molecolare (C.N.R.) has made available
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